World Transactions on Engineering and Technology Education ©2018 WIETE
Vol.16, No.3, 2018

Tools support for the management of students’ software engineering projects
Viljan Mahnic

University of Ljubljana
Ljubljana, Slovenia

ABSTRACT: Two software tools that are used at the University of Ljubljana, Ljubljana, Slovenia, to support
the management of students’ software engineering capstone projects are described. The first tool is an in-house
developed tool that supports the management of Scrum-based projects taken within the capstone course at the first
Bologna level. The tool not only provides the typical functionality required for managing Scrum projects, but also meets
the specific needs of teaching staff and researchers. The second tool is Kanbanize, a commercially available tool used
for managing students’ projects at the second Bologna level. This tool supports the most important Kanban concepts,
i.e. the maintenance of the Kanban board, limiting work in progress and optimising the lead time.

INTRODUCTION

Learning software engineering (SE) requires a lot of practical work that helps students to fully understand and reflect on
SE theory. Therefore, it is suggested that the SE curriculum should include project-based classes that provide
an adequate combination of theory and practice [1]. Recommendations for undergraduate software engineering
curricula also mandate that students undertake a capstone course, which covers one full year [2]. The course should
integrate previously learned material, deepen their understanding of that material, extend their area of knowledge,
and apply their knowledge and skills in a realistic simulation of professional experience.

At the University of Ljubljana, a SE capstone course is taught on two levels: the first and the second Bologna level.
At both levels, the course lasts one semester (15 weeks). At the first Bologna level, the course is mandatory for all
students in the SE curriculum, while at the second Bologna level, it has been declared as an optional professional
course. In addition to these basic goals that all capstone courses should pursue, the capstone courses at the University of
Ljubljana also serve as a tool for imparting agile and lean methods to students [3]. Projects that students develop at the
first Bologna level strictly follow Scrum rules and practices, while projects at the second Bologna level are used to
introduce lean concepts of Kanban.

Teaching agile and lean software development through capstone projects not only exposes students to state-of-the-art
topics having industrial relevance, but also stimulates the teaching staff to use modern ways of teaching through
project-based learning, and makes it possible to conduct empirical studies with students, thus contributing to empirical
evidence regarding agile and lean practices. Since students work in groups on quasi-real projects, monitoring their
progress and collecting data for empirical studies is best done by the use of a computerised tool. The tool should support
the development methodology (i.e. Scrum and Kanban, respectively), help teaching staff to monitor students’ progress
and reduce the burden of administrative work and provide empirical data for evidence-driven assessment of the
development process.

The purpose of this article is to describe two tools that are used for the management of students’ capstone projects at the
University of Ljubljana. The first one is an in-house developed tool that supports the management of Scrum-based
projects taken within the capstone course at the first Bologna level. The second one is Kanbanize, a commercially
available tool used for managing students’ projects at the second Bologna level.

The remainder of the article is structured as follows: the main characteristics of Scrum-based capstone projects and the

corresponding tool are provided in the next two sections, followed by two sections describing the Kanban projects and
the Kanbanize tool, respectively. The last section provides a conclusion.

218

SCRUM-BASED CAPSTONE PROJECTS

Scrum prescribes iterative and incremental development processes. All work is done in iterations (called sprints) and
each sprint should provide an increment of potentially shippable functionality. There are three roles: the product owner,
the team and the Scrum master. The product owner represents interests of everyone with a stake in the project and its
results. He/she maintains a prioritised list of requirements (called product backlog), which usually consists of a set of
user stories. The team is responsible for implementation of the required functionality, while the Scrum master is
responsible for ensuring that everybody follows Scrum rules and practices.

The Scrum-based capstone projects comprise four sprints [4]. The first sprint (also called sprint 0) lasts three weeks and
serves as a preparatory sprint. During sprint 0, intensive formal lectures take place in order to teach students Scrum and
acquaint them with user stories they are going to develop. The stories are written and prioritised by a domain expert
(the teacher or a representative of a co-operating company) playing the role of the product owner. Students are grouped
into teams of four, responsible for the development of the required functionality. Each team estimates the stories using
planning poker or team estimation game and prepares the release plan.

The rest of the course is divided into three regular Scrum sprints. Each sprint starts with a sprint planning meeting at
which student teams define the contents of the next iteration and develop the initial version of the sprint backlog.
During the sprint, the teams have to meet regularly at the daily Scrum meetings and maintain their sprint backlogs,
while at the end of each sprint, the sprint review and sprint retrospective meetings take place. At the review,
the students present their results to the instructors, while at the retrospective meeting students and instructors meet to
review the work done in the previous sprint, giving suggestions for improvements in the next. After three sprints,
the first release should be complete and delivered to the customer.

Students are required to provide data on their initial effort estimates, the amount of work spent and the amount of
work remaining. At the beginning of each sprint, they are encouraged to re-estimate their velocity and the remaining
user stories in order to obtain a more realistic plan for future iterations. Instructors compare students’ plans with
actual achievements and analyse whether students’ estimation and planning abilities improve as they gain more
knowledge of Scrum and a better understanding of the user requirements. Special attention is devoted to the notion of
done requiring the students to bring the code up to the useful, real-world level, which can survive an encounter with
end users.

Data collected during the course not only provide feedback about what the students have learned, but also contribute to
evidence-driven assessment of Scrum processes and practices. Students’ perceptions of Scrum were studied first [5];
afterwards, the course served as a case study on agile estimating and planning using Scrum [6], and provided data for
the evaluation of the accuracy of planning poker estimates [7].

TOOL SUPPORT FOR SCRUM-BASED CAPSTONE PROJECTS

Motivation for developing a tool for the management of Scrum-based capstone projects stemmed from results of the
survey [8], which found that existing agile tools are either too simple, providing only limited functionality or too
cumbersome and difficult to use. Additionally, the survey found existing tools difficult to adapt to the specific needs of
end users.

Sprint 0

During sprint 0, the tool: 1) automates the formation of student teams and the allocation of teams to appropriate
sections of laboratory classes; 2) provides facilities for initial product backlog preparation; and 3) automates the
effort estimation process. Considering the Scrum principle of self-organisation, students are given an opportunity to
decide who they should work with. When a team is formed, the students use the tool to enter the team composition
and choose the section of laboratory classes they want to attend, as well as the project they are going to develop.
The choice of the project and the desired laboratory class section is performed on the basis of the first-come, first-
served principle.

In parallel with the student team formation, the member of the teaching staff (or the representative of a company) that
plays the role of product owner uses the tool to prepare the initial product backlog, which consists of a set of user
stories. As shown in the upper part of Figure 1, each user story is represented with a story card containing a written
description (used for planning and as a reminder for further conversations) and a set of acceptance tests (to determine
when a story is done). The product owner also defines the priority and business value.

At the end of sprint 0, the tool enables student teams to estimate the effort required for implementation of each user
story. The tool automates two estimation techniques, i.e. planning poker and the team estimation game. Both techniques
require user stories to be estimated in story points, and the tool allows each team member to provide his/her estimate
either by using predefined values (i.e. 0.5, 1, 2, 3, 5, 8, 13, 20, 40) or by specifying an arbitrary explicit value.

219

Sprints 1, 2 and 3

Each regular sprint starts with the sprint planning meeting at which the user stories that a team commits to implement
are marked by ticking the corresponding check box and moved to the sprint backlog with a single click. Then, the
stories in the sprint backlog are decomposed into tasks and the effort required for each task is estimated. Finally, the
tasks are assigned to team members. For each task, the tool enables recording of the effort spent and the amount of work
remaining. An example of decomposition of a user story into tasks is shown in the lower part of the Figure 1 together
with the status of each task, the assignee and the amount of work remaining.

#30 Kartotecni list Sprint 3 Estimate: 4 pt Work: 7 h
Priority: Must have | Business value: 0 | Actions: NOTES, EDIT TASKS Past Spr. Estimate: - Work: -

Student/referentkaluditelj lahko izpide kartote&ni list.

Student lahko izpi&e kartoteéni list samo zase, referentka in uditelj pa lahko izpiSeta kartoteéni list za kateregakoli $tudenta.
Predmeti naj bodo grupirani po Studijskih programih in Studijskih letih. Za vsako Studijsko leto se izpiSejo vsi predmeti, ki jih je
Student vpisal, ne glede na to, ali je izpit Ze opravil ali ne. Izpis naj bo mozen v 2 variantah: vsa polaganja in samo zadnje
polaganje.

Preveri izpis kartotecnega lista takoj po vpisu. Izpis mora obsegati vse predmete, ki jih je Student vpisal, brez ocen.

Vnesi nekaj ocen in preveri izpis na oba naéina (vsa polaganja, samo zadnje polaganje).

Preveri za Studenta, ki je vpisan v ve¢ Studijskih letih.

Preveri za Studenta, ki je vpisan v vec Studijskih programov.

Preveri izpis glave ($tudijsko leto, Studijski program, letnik, vrsta vpisa, naéin studija) in noge (za vsako $tudijsko leto posebej
Stevilo doseZenih kreditnih tock in povpreéna ocena).

Preveri izpis podatkov o vsakem polaganju (Sifra predmeta, ime predmeta, izprasevalci, datum izpita, zaporedna Stevilka
polaganja v celoti, zaporedna Stevilka polaganja v tekocem Studijskem letu, Stevilo kreditnih tock, ocena).

Preveri izvoz v PDF in CSV.

Tasks Status / action Member Remaining
Frontend Completed Blatnik B. 0Oh
Backend Assigned Blatnik B. 1h
Testiranje Assigned Blatnik B. 4h
Generiranje pdf in csv Pending Cernel¢ 3h

SUM: 8h

Figure 1: An example of a user story card. The upper part of the figure represents the user story as it is described in the
product backlog. The lower part shows the tasks that are added by the team during the sprint planning meeting.

Data on work remaining allow for the monitoring work progress through burn down charts, while the amount of work
spent makes it possible to track the contribution of each student, and study the difference between the estimated and
actual effort. The tool provides stacked burn down charts at two levels: sprint and release. Both charts visualise the
correlation between the amount of work remaining and the progress of a student team in reducing this work.
An example of a sprint burndown chart is given in Figure 2.

X-axis: Days since sprint start (19.03.2018)
¥-axis: hours of work

Sprint burn down chart

7 Sprint 1 stat |

Work rem aning
= Workload

Sprint Status: 29 h of work remaining / 139 h of work spent

Figure 2: Sprint burndown chart.

220

For smooth running of the course, it is important that student teams work on their projects without procrastinating and
the workload is distributed uniformly among team members. Figure 3 shows the so-called team involvement chart,
which helps the students and the instructors to monitor these two aspects. The stacked bar chart in the upper part of the
figure shows the amount of work performed by each student on each day of the sprint. In the lower part, the workload
distribution is presented both in tabular form and with a pie chart.

Sprint duration: 19.03.2018 - 13.04.2018

by Team members in Sprint 1

299, BABNIK Z.
User Committed Work Percentage 18% - ::: ; i
Babnik Z. 35h 35h 100 % 7 ® UIDMAR D.
Bracun L. 39h 39h 100 %
Rek D. 38.5h 39.5h 100 %
Vidmar D. 26h 25h 96 %
sum 139.5h 138.5h 99 % 289/,

=0,

Figure 3: Team involvement chart. The upper part represents the amount of work spent by each team member on each
day of the sprint. In the lower part, the contribution of each member is shown in tabular and graphical form.

The tool also provides information on whether all teams regularly hold daily Scrum meetings, and maintain data on
work spent and work remaining. Students who fail to provide minutes of daily Scrum meetings or data on work spent
and work remaining are automatically reminded via e-mail.

At the end of the sprint, the product owner marks the user stories that meet acceptance criteria as done, while unfinished
stories are automatically moved back to the product backlog for possible inclusion in one of the subsequent sprints.
For each rejected story, a comment can be added specifying the reasons for rejection.

End of the Project

At the end of the project, the tool assists the evaluation of students’ projects by preparing a realisation report. On the
basis of data collected during the project, the tool automatically computes the number of story points achieved by each
student separately and the team as a whole. If there are several students working on the same user story, the story points
are divided among the students relative to the effort they invested in the implementation.

KANBAN-BASED CAPSTONE PROJECTS

While retaining main characteristics of Scrum-based capstone projects, Kanban-based capstone projects also introduce
the lean concepts of Kanban [9]. Special attention is devoted to issues, which seem to be most important, when
introducing Kanban to software development, i.e. the structure of the Kanban board, assignment of work-in-progress
(WIP) limits and measuring lead time. Additionally, different ways of introducing Kanban are studied: a stepwise
introduction through Scrumban or pure Kanban approach abandoning some of the Scrum practices. For this reason,
student teams are divided into two groups: the Scrumban group and the Kanban group.

Teams belonging to the Scrumban group (in the remainder Scrumban teams) retain the Scrum concept of fixed-length
iterations. Consequently, their projects still consist of sprint 0 and three regular Scrum sprints, but are augmented by the
use of the Kanban board and WIP limits. The board visualises the workflow, while the WIP limits prevent the team
members from working on several work items at the same time, thus minimising lead time. The Kanban board includes
the sprint backlog column, which is initiated at each sprint planning meeting. The contents of the sprint backlog must
not exceed the estimated velocity.

Teams belonging to the Kanban group (in the remainder Kanban teams) follow lean concepts more strictly by
abandoning fixed-length iterations and sprint planning. They are no longer required to maintain the sprint backlog and
track their velocity. Instead, the product owner maintains a small number of high priority stories, which a team member
can pull into development, whenever he/she completes the user story he/she worked on before. In order to ensure
continuous workflow, the product owner is also expected to evaluate user stories promptly, as soon as each user story is
signalled as finished. Consequently, the review meetings are not held at regular intervals, but are event driven. A review
meeting is triggered whenever a set of minimum marketable features (MMF) predefined by the product owner is ready
for release.

221

There is no difference between the groups regarding daily Scrum and sprint retrospective meetings. Teams belonging to
the Kanban group hold their retrospective meetings regularly at the same intervals as Scrumban teams (i.e. at the end of
each Scrumban sprint) and all teams are required to meet regularly at the daily Scrum meetings.

TOOL SUPPORT FOR KANBAN-BASED CAPSTONE PROJECTS

The course execution is supported by Kanbanize, a commercial project management tool that has been developed
especially for managing Kanban-based projects. The use of Kanbanize makes it possible to emphasise the most
important Kanban concepts: process visualisation, limiting work in progress and measuring lead time.

In order to visualise the workflow, each user story from the product backlog is represented as a card on the Kanban
board consisting of a sequence of columns that represent the various states a work item can exist in during the
development process. Each student team maintains its own board and, as work progresses through the development
lifecycle, moves the cards from one state to the other until they finish in the last column. By using Kanbanize, it is
possible to create a Kanban board with an arbitrary structure. Users can thus define the columns that best suit their
development process, and each column can be further divided into sub-columns and sub-sub-columns. Each column can
have a WIP limit at the top, indicating how many cards can be in the corresponding workflow state at any one time.

Figure 4 shows an example of such a board. Note that due to limited space some columns are minimised (a special
feature of Kanbanize), but can be expanded to look the same as those shown in their entirety.

I= Dashboard | Tabla za skupino 7

@} Analytics I Edit Workflow

[8] Next [3/4] [0] o] Done [7/0]
0] Coding [2/0] Testing [1/0] 0] Documentation [3/0]
370 270 1/0 370 7/0
Bl “m ! “m © @ o !
. e . e TS | GRS . e
" #15 Izraéun n #14 Posodabljanje #7 Kreiranje kartice n #12 Posodabljanje € € #5 Kreiranje table (Must
N janj i ljanj J
° povpreénega a lastnosti stolpca (Must have) t vsebine kartice (Should < E have)
d potrebnega éasa (Should ! (Should have) e have) e e
u have) y 1 24 g p p 21h 43
c oh 0d . =_‘ U] . Backend: implementacija end. r B £ . t t Backend: Definicija endpointa.
L | o ! Odrazanje sprememb na tabli Frontend: obrazec za kreiranje... : Kreiranje obrazea a 8 Frontend: Implementacija obr.
e a s n n
B Izpis apozorila ob spremermbi.. Frontend: prikaz kartice natabli Omejitev zatetnega mejnega .. | c Backend: Imp lementacija end...
N s none = Odazanje sprememb v drgih Frontend: implementaciarazi. o Omeftevznouraj mejnih stohp.. o ¢ Tescranje delovanja
e £16 ladelava N Konsistentnast podatkov o sp. Frontend: kreiranje kartice, i.. n Omejitev po izstopu iz kenéne. . Dokumentacija
‘: kumulativiiega E Testiranje Implementacija krditve WIP Testiraniz : New subtask
diagrama delovnega toka Dokumentacija Dokumentacija
© | (Should have} o | | = Testranie (2] | ‘ a Zagetna ocena: 18
g i New subta ™) Dokumentacija [2h] New subtas d
» ol) T
! TR o o =]
- . 5 #10 Kreiranje nove table
Zacetna ocena: &
ma #11 Uporabniska o #9 Prikaz podrobrosti | | s kopiranjem strukture
dokumentacija (Must kartice (Must have) - (Must have)
3 have]
#17 lzpis kriitev N) T N
omejitve WIP (Could | o
have) : Analiza zgodbe [1h] Frontend: Dodati funkcijo za k...
o o |l Frontend: dodati povezave ne: Implementacija backenda [4h] Testiranje
Oblikovanie slate dokumentac...

New subtas}

Implementacija frontenda [8h]

Dokumentacija

Testiranje [2h] New subtash
Pisanje dokumentacije [1h]

New subtask E
Jatem i #2 Vzdrzevanje 1]
FESHIEEELD razvojnih skupin (Must '~/
T)
#B Prestavijanje kartice o il | 9
{Must have) Definicija novih REST end-poi...
1m 154 Frontend [6h]

Backend: Implementacija end.. Testiranje [3h]

Figure 4: Kanban board used by a team belonging to the Kanban group.

When a new user story is created, the corresponding card is placed in the product backlog column. The next column is
intended to contain a limited number of high priority stories, which the product owner wants to be implemented first.
Activities performed by student teams are united within the development column, which is further divided into the
analysis & design, coding, testing, integration and documentation sub-columns. The acceptance ready column serves as
a buffer between the development team and the product owner. Whenever a student team completes a user story, they
move the corresponding card to the acceptance ready column, thus giving the product owner a sign to start acceptance
testing. Then, the product owner pulls the card into the acceptance column and, if the user story passes all acceptance
tests, moves it to the final column done.

By using the Kanbanize analytics, the student teams can obtain a cumulative flow diagram, compute the lead time, and
compare the time that a card stayed in each column to the amount of work actually spent in that column. These data
have to be reported at each retrospective meeting and serve as measures of process effectiveness.

Figure 5 shows an example of a cumulative flow diagram. For each day, the number of cards in each column is

displayed. The width of the area belonging to each board column shows how long a card stayed in that column,
while the slope of the area belonging to the done column indicates velocity (i.e. number of items deployed per day).

222

In Figure 6, the calculation of lead time is shown. Bars represent user stories and the values at the top show the lead
time in days. In addition to the total lead time, it is also possible to obtain the time that a card spent in each column.

12.5

7.5 —

2.5 —

o
I T T |

G : : : : : : ? 2 %, 2 2 % % - % % ET T T
T 0% & B2 7% B L 0% Y % % ®

%

B Next Analysis & Design [Coding [Testing B Integration [Documentation Acceptance Ready [l Acceptance Done

Figure 5: Cumulative flow diagram.

Cycle Time

25

206

20 —

10 = - = Trend: 7.4 days

4785 4786 4787 4788 4789 4790 4791 4792 4793 4796 4797 4799 4800 48M 4308
@ Trend = Meantime == Standard deviation (Max 68%) == Standard deviation (Min 68%) [l Acceptance [l Acceptance Ready [Documentation
I Integration Testing WM Coding MM Analysis & Design

Figure 6: Lead time calculation.

CONCLUSIONS

Two software tools that support the management of students” SE capstone projects were presented. The first tool was
developed at the University of Ljubljana and supports Scrum-based projects. The second one is a commercial tool and is
used for managing Kanban-based projects. Both tools have proved to be useful and well accepted among students.

REFERENCES

1. Borman, D., Should software engineering projects be the backbone or the tail of computing curricula? Proc. 23rd
Conf. Software Engng. Educ. & Training, Pittsburgh, PA, USA, 153-156 (2010).

2. Joint Task Force on Computing Curricula, Software Engineering 2014: Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering. IEEE CS and ACM (2015), 17 May 2018, https://www.computer.org/
cms/peb/docs/se2014.pdf

3. Mahni¢, V., The capstone course as a means for teaching agile software development through project-based
learning. World Trans. on Engng. and Technol. Educ., 13, 3, 225-230 (2015).

4. Mahni¢, V., A capstone course on agile software development using Scrum. Proc. IEEE Trans. on Educ., 55, 1,
99-106 (2012).

5. Mahni¢, V., Teaching Scrum through team-project work: students’ perceptions and teacher's observations. Inter. J.
of Engng. Educ., 26, 1, 96-110 (2010).

6. Mahni¢, V., A case study on agile estimating and planning using Scrum. Electronics and Electrical Engng., 5,
111, 123-128 (2011).

7. Mahni¢, V. and Hovelja, T., On using planning poker for estimating user stories. J. of Systems and Software, 85, 9,
2086-2095 (2012).

8. Azizyan, G., Magarian, M.K. and Kajko-Mattson, M., Survey of agile tool usage and needs. Proc. Agile 2011
Conf., Salt Lake City, UT, 289-297 (2011).

9. Mahni¢, V., From Scrum to Kanban: introducing lean principles to a software engineering capstone course. Inter.

J. of Engng. Educ., 31, 4, 1106-1116 (2015).

223

	Tools support for the management of students’ software engineering projects

